Linearized Controllability Analysis of Semilinear Partial Differential Equations

نویسندگان

چکیده

It is well-known that the controllability of finite-dimensional nonlinear systems can be established by showing linearized system. However, this classical result does not generalize to infinite-dimensional systems. In paper, we restrict ourselves semilinear systems, and show exact system implies The restrictions concerning operator are similar those found in literature about stability analysis

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry Coefficients of Semilinear Partial Differential Equations

We show that for any semilinear partial differential equation of order m, the infinitesimals of the independent variables depend only on the independent variables and, if m > 1 and the equation is also linear in its derivatives of order m− 1 of the dependent variable, then the infinitesimal of the dependent variable is at most linear on the dependent variable. Many examples of important partial...

متن کامل

Controllability of Stochastic Semilinear Functional Differential Equations in Hilbert Spaces

In this paper approximate and exact controllability for semilinear stochastic functional differential equations in Hilbert spaces is studied. Sufficient conditions are established for each of these types of controllability. The results are obtained by using the Banach fixed point theorem. Applications to stochastic heat equation are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC-PapersOnLine

سال: 2021

ISSN: ['2405-8963', '2405-8971']

DOI: https://doi.org/10.1016/j.ifacol.2021.06.093